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We present a simple algorithm for Monte Carlo simulation of field theories containing 
fermionic fields. It is based on a small step-size limit in a Metropolis et ai. scheme. The approach 
has similarities with the Langevin evolution. A simple modification of the procedure permits an 
interpolation to the pseudofermionic algorithm. 

1. Introduction 

Monte  Carlo simulation has become a prime tool in the study of nonperturbative 
phenomena  in quantum field theory. The results for pure gauge fields have been 

spectacular, giving some of our first quantitative information on the solution of the 
SU(3) gauge theory of the strong interactions [1]. Despite the successes, progress has 
been considerably slower in attempts to extend these calculations to include 
fermionic fields. While numerical algorithms have in principle been found for 

simulating the dynamical quarks of the strong interactions, they are all extremely 
intensive in their demands for computer time [2-7]. This means that necessary 
checks for finite size effects, cutoff independence, and other sources of systematic 
error have been severely limited. 

I t  is unlikely that the problem with fermions is merely one of not yet having 
found the optimal  algorithm. The complexity of maintaining antisymmetry in the 
wave function of a filled Dirac sea requires detailed information on an entire 

spectrum of states. The extent to which this means that fermionic algorithms are 
inherently slower than bosonic procedures is still a matter  of debate. 

In this paper  we wish to present a new algorithm for simulating fermionic fields. 
Our  approach has close connections with the Langevin simulations advocated in 
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ref. [2] as well as the pseudofermion approach of ref. [3]. We perform some simple 
tests of the algorithm with SU(3) lattice gauge theory on a small lattice. 

As with most other promising techniques for dealing with fermionic fields 
[2-4, 6], we attempt to eliminate the need for a Monte Carlo simulation inside a 
Monte Carlo simulation by considering updating sweeps of the entire lattice volume 
but with only small changes in the value of any given gauge field. Whether this 
attempt can succeed depends on whether the size of the small changes can remain 
finite as the system volume is increased. This is a reasonable expectation as long as 
the correlation length is kept fixed, but it may be that the critical slowing down of a 
simulation with increasing correlation length is inherently more severe with fermi- 
ons than with conventional bosonic simulations. 

2. Preliminaries 

We study a system of fermionic fields interacting with a bosonic field via a 
coupling term which is quadratic in the fermions. Thus the generic "partition 
function" we wish to simulate is 

z = fd4  dd~ dA e x p ( -  So(A  ) - ~ M ( A ) + ) .  (1) 

Here A denotes the bosonic fields, which would be gauge fields in the case of the 
strong interactions, and ~p denotes the fermionic or quark fields. The quantity 
So(A  ) denotes the part of the action which depends on the gauge fields alone and 
M ( A )  contains the kinetic, mass, and interaction terms for the fermions. The 
fermionic fields are taken to be anticommuting variables, integration over which is 
defined in the standard way to give 

Z= f dAlM(A)lexp(-So(A)). (2) 

The problem with attempting a direct Monte Carlo simulation of the system in 
eq. (1) is that the fields ~b are not ordinary numbers, and the integrand cannot be 
interpreted as a probability. Eq. (2), on the other hand, is an ordinary integral, but 
the matrix M is extremely large (although quite sparse in practice) and it is 
impractical to calculate its determinant the large number of times necessary for a 
conventional Monte Carlo evaluation. 

To proceed, we follow ref. [5] and rewrite (2) as 

Zcx f dq~ dq~* d A e x p ( - S G ( A ) - q ~ * M - l ( A ) q ~ ) ,  (3) 

where ff is a commuting bosonic field. In order that the ff integral be well defined, 
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M should be a positive definite matrix. We will ensure this by considering M to be 
a square 

M =  (D + m)(D ¢ + m),  (4) 

where m is the fermion mass in lattice units. This is equivalent to considering a 
doubling of the fermionic species, one interacting with A via D(A) and the other 
via D t. We will later discuss a possible way to remove this doubling. 

To simulate this system, we wish to generate an ensemble of configurations of the 
fields ~ and A with a probability distribution 

e (  A, ep) <x e x p ( - S c (  A ) -ep*( D t + m ) - l (  D + m)-lep). (5) 

The appearance of the inverse of the large matrix D + m in the probability makes 
this difficult for direct attack, although the authors of ref. [5] observed that only one 
vector, (D + m)-lq~, is needed at any step and that this could be obtained via an 
iterative scheme such as the Gauss-Seidel or the conjugate gradient algorithm. The 
time involved for such an inversion will grow with the volume of the system and 
thus this gives an exact algorithm for simulating the fermionic system where the 
time per sweep of all variables will grow as the volume squared. The algorithms of 
refs [2-4, 6] attempt to avoid this severe growth at the expense of making a slow 
migration through phase space and only finding matrix dements of (D + m)-1 once 
per full sweep of the gauge variables. Of course, the slower the flow through phase 
space, the more sweeps will be necessary to reach equilibrium. 

3. The algorithm 

Our algorithm consists of alternate sweeps through the ~ and the A fields. The 
updating is particularly simple. We begin by generating a random vector X with 
gaussian probability 

Px ~ exp(-x*X).  (6) 

If we now take 

~b= ( D + m ) x ,  (7) 

this will be distributed with the desired probability 

P, oc exp(-~*(  D t + m )-1( D + m )-1~).  (8) 

The construction of X and q~ is computationally fast because the individual 
components of X are independent and because the matrix D + m needed in eq. (7) 
is local, i.e. matrix elements are nonvanishing only for physically nearby sites, at 
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least for the usual models of interest. Thus we rapidly obtain a new q, field 
independent of its previous value. We note in passing that the Langevin implemen- 
tation in ref. [2] does an equivalent construction in the use of gaussian random 
numbers to simulate the fermionic determinant. 

Actually, as will become apparent, we will not need q~ explicitly anywhere in the 
updating algorithm. Although we could eliminate this field and consider only X, we 
find it simpler for discussion to consider the simple form of the coupled probability 
distribution in eq. (5). 

In addition to the field X, the updating procedure for the gauge field requires 
another quantity 

~= (Dt + m ) - I x =  M-lq~. (9) 

This, unfortunately, is not so trivial to obtain. We use the conjugate gradient 
algorithm to find this quantity. The use of the conjugate gradient or similar 
inversion scheme is common also to the Langevin (ref. [2]) or microcanonical (ref. [4]) 
approaches. 

We now come to the updating of the A field. What one would like to do is 
something like a Metropolis et al. [8] procedure where the acceptance of changes is 
governed by the action 

S(A,  ~b) = SG(A ) + dp*(D t + m ) - l ( D  + m)-l~b. (10) 

Unfortunately, every time A is changed, D + m changes and its inverse on q~ would 
need to be calculated again. It is this slow procedure we wish to avoid. As we will be 
working with small changes in A, consider the first derivative of eq. (10) with 
respect to A 

as  , as  G 

OA OA 

OD 
2 Re(q~*(D* + m ) - l ( D  + m)-l-ff~--(D + m)-ldp) 

OS~ OD OD* 
- O--A l i * ' - ~ X - X * - ~  li" (11) 

Note that if we consider the quantity 

then 

ST( A , X, ~) = S t -  ~*(D + m ) x -  x*(D* + m)~, (12) 

OS *= OST (13) 
OA OA x,~" 

If we consider a small variation of A, to first order the change of S at constant q~ 
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equals the change in S-r calculated at constant X and 4. As only changes in the 
action enter in the Metropolis [8] algorithm, if we update the A fields using the 
action ST in such a procedure, this will be equivalent to using the correct action of 
eq. (10) up to terms of higher order in the changes. Our algorithm is to do exactly 
this, which is easily implemented efficiently because ST is local. 

This procedure makes errors which are of higher order in the size of the changes 
per sweep in the gauge field variables. A similar situation holds with the algorithms 
of refs. [2-4, 6]. One can, following ref. [2], envisage calculating the higher order 
terms in the effective equilibrium action, although it is not as straightforward here 
due to the probabilistic nature of the Metropolis algorithm. Furthermore, such 
formal calculations do not yield precise information on where still higher orders are 
negligible, making the algorithm a good approximation. Indeed, to have confidence 
that the errors induced due to these terms are small, one should study a desired 
measurable for a few values of this step size and extrapolate to the infinitesimal 
limit. Ref. [2] argued that for the Langevin algorithm a finite step-size represents a 
simulation with an effective action which differs from the initial one by terms which 
vanish with the step size. If this new action has the same continuum limit, then even 
these finite step simulations should give the same numerical results for physical 
observables. Nevertheless, an extrapolation to vanishing step is still necessary if one 
wishes to compare the results of different algorithms with a given set of parameters 
at a finite lattice spacing. 

To the extent that the finite step errors are random, they may be thought of as an 
effective extra noise being added to the action. In a first order Langevin simulation; 
noise is used to simulate thermal fluctuations. Thus we might expect that a large 
part of the effect of these errors will be an effective increase of the system coupling. 
This increase appears in our simulation to be proportional to the Metropolis 
step-size. 

4. A numerical test 

We have tested the above procedure with SU(3) lattice gauge theory on a small 
system of 44 sites. For this analysis we used 8 flavors with a mass of 0.1 in lattice 
units; i.e. we used the action from ref. [4]. This choice of action permits comparisons 
with previous studies using other methods. A natural next step would be to use 
larger lattices and to reduce the number of flavors using known techniques. 

As discussed above, we update the gauge fields with the Metropolis [8] procedure 
using the action of eq. (12). For a given link t ,  the gauge field is characterized by a 
group element U e. To update this link, a trial U/ is obtained by multiplying U t by a 
matrix R from a set of 200 matrices. This set is formed by requiring that (i) for each 
matrix in the set its inverse also is in the set, and (ii) a given element of the set is 
obtained from R = exp(iet • k),  where X~, i = 1, 8, are the Gell-Mann matrices and ct 
is a gaussian random vector chosen so that (or) = 0, and ( la l  2 ) - -  p2. The parameter 
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Fig. 1. The average plaquette as a function of the parameter p. The extrapolation to p = 0 should give 
the correct value for the plaquette in the interacting theory with fermions. The solid line is a linear fit. 

p provides a way of controlling the size of the changes allowed in the gauge fields 
during a sweep of the lattice; indeed, p going to zero corresponds to taking a 
vanishing step size. 

In fig. 1 we show the average plaquette 

P = ( ~ R e ( T r ( U p ) ) ) ,  (14) 

where Up is the product of group elements around an elementary lattice square, as a 
function of the parameter O at/3 = 4.5. These points were obtained from 500 to 2000 
iterations after equilibration, with the longer runs corresponding to the smaller 
values of O. The sweeps discarded for equilibration similarly varied from about 200 
to 1000. The corridor marked by dashed lines denotes the value of the plaquette for 
the same value of/3 in the pure gauge theory. A linear extrapolation of our points to 
p = 0 gives a value P = 0.383, a value roughly consistent with that obtained in 
ref. [4]. In that paper the microcanonical algorithm was employed on an 83X 4 
lattice. We note that with 4 sites in the time direction the transition to a quark gluon 
plasma is expected a t /3  = 4.67 _ 0.1 [4]; consequently our simulation was done in 
the confining region. Expecting only finite size effects to differ, we are encouraged 
by the agreement of the two methods. 

Note  the rather steep P dependence in fig. 1. Indeed, for O > 0.05 the average 
plaquette is smaller than the pure gauge value, opposing the correct result that 
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Fig. 2. The average plaquette at O = 0.1 as a function of the accuracy of the conjugate gradient 
inversion. 

fermionic loops tend to order the system. We conclude that our procedure requires a 
rather small value of p. This may, however, be counteracted by the simplicity and 
speed of the procedure. 

In addition to p, the algorithm has a dependence on the accuracy with which the 
conjugate gradient inversion for eq. (9) is carried out. The field ~ in that equation is 
obtained iteratively, and at the ith step the residue 

r = If(Dr + m)l; (i)- xll (15) 

determines the accuracy of the inversion. For the above analysis we required 
r < 0.05. To verify that this is adequate, we chose P = 0.1 and performed runs with 
several values of r. The results are displayed in fig. 2. The average plaquette is 
essentially independent of r for r < 1.0, showing that 0.05 was a conservative 
choice. Of course, the number of conjugate gradient iterations required decreases as 
r is increased, as seen from the top scale of fig. 2. 

5. Comparisons with other approaches 

The Metropolis algorithm in the limit of small step-size is quite close to the 
Langevin approach. In both cases small random changes are made to the field 
variables. A Metropolis program first considers small unbiased changes about the 
old field, and then, to maintain the desired peaking of the distribution towards 
lower action, rejects a fraction of those changes which go toward larger action. In 
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contrast, the Langevin approach always accepts the changes, but makes them in a 
direction which is biased towards lower action. In this approach the A field evolves 
in a "simulation time" coordinate via a stochastic differential equation of form 

OS 
d A / d ¢  = - O--A- + ~/(~')" (16) 

Here ¢ represents a noise term which simulates thermal fluctuations For more 
details see ref. [2]. Now note that the formula in eq. (13) gives the derivative of S 
with respect to A. If all fields X and ~ are obtained from additional gaussian noise 
as in eqs. (6) and (9), we obtain essentially the algorithm in ref. [2]. For the purpose 
of numerical integration of eq. (16), the variable T is made discrete with step size e. 
On going from one ¢ step to the next, the noise term adds a random piece of 
magnitude e 1 /2  to each variable. This corresponds to the Metropolis step size in our 
algorithm; consequently, the parameter e in ref. [2] is proportional to the square of 
our variable 0. 

The similarity of the approaches indicates that the errors due to a finite step size 
should be comparable. To directly make such a comparison, one should replot fig. 1 
against a common definition of the step size. The simplest way to fix normalizations 
would be to use a number of simulation steps which characterizes the decorrdation 
of the system. As the step size is increased, this decorrelation time will decrease, but 
the finite step errors will increase. We conjecture that the behavior of the line in fig. 1 
will be comparable for our algorithm and the Langevin approach, if the ordinate is 
taken as the inverse of this decorrelation time. As the momenta in a microcanonical 
simulation substitute for the noise in the Langevin approach, we expect a similar 
behavior for that method as well. Thus the choice between the algorithms amounts 
to which is easier to implement efficiently. 

Our algorithm also has close connections with the pseudofermion method of ref. 
[3]. That approach attempts to find configurations of the field A with a Boltzmann 
weighting determined from the action 

= so  + Tr(hi M ) .  (17) 

For small changes in A, changes in this action are determined from the derivative 

- -  = - -  + T r  M - 1  ( 1 8 )  
OA OA 

To estimate the needed matrix dements of M -t ,  ref. [3] uses a Monte Carlo 
simulation to obtain commuting fields weighted by 

P~ cx exp( - ~*M().  (19) 
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Matrix elements of M-1 are given by expectation values of the ~ fields 

( M  = (20) 

If we now consider eq. (9) with X obtained as in eq. (6), we see that our field ~ is 
constructed to have precisely the probability distribution in eq. (17). Indeed, the 
fields in ref. [3] could just as well be obtained from a conjugate gradient inversion 
on gaussian random numbers as used here. Then our algorithm corresponds to using 
but a single configuration of fields to estimate M -1 via eq. (18). This would naively 
seem to have a substantial error, but as the step size for changes in A goes to zero, 
this error averages out. 

Clearly our algorithm is an extreme case. One could interpolate between this and 
the algorithm of ref. [3] by averaging over some number N of ~ fields. This may also 
be thought of as considering N species of ferrnions each with its own ~ field, but 
then letting each species only contribute 1/N in the updating of the A field. As N 
increases to infinity, we obtain the pseudofermion algorithm of ref. [3]. In fig. 3 we 
show the step-size dependence of the average plaquette obtained for several values 
of N. Here we plot the plaquette versus the probability of accepting a trial change in 
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Fig. 3. The average plaquette as a function of the acceptance probability for a Metropolis hit. The 
various values of  N4, should all extrapolate to the same value at unit acceptance. The lines are linear fits. 
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fields. 

the Metropolis updating. In this graph we also give points obtained from the 
pseudofermionic algorithm of ref. [3] where we used 24 pseudofermionic configura- 
tions to estimate the average in eq. (18). The solid lines in fig. 3 represent linear fits 
to the data. In fig. 4 we plot against 1/N the slopes and the intercepts at 100% 
acceptance for these fits. In this graph we also include a point for our pseudo- 
fermionic run, which is plotted at 1/N= ~, corresponding to the number of 
pseudofermionic configurations used in those runs. Note that all values of N are 
consistent with having a common intercept. Note also that the infinite N limit, 
which should represent the pseudofermionic algorithm, appears to have a small but 
nonvanishing slope. 

This allowing of each species to contribute only fractionally in the updating of the 
A field may provide a scheme to reduce the effective number of fermion species 
overall. Naively, this can remove the extra doubling [9] introduced in eq. (4) as well 
as any inherent doubling in the basic formulation of the fermions. Such a possibility 
has been mentioned in the context of both the algorithms of refs. [2] and [3], where 
one simply puts a species reduction factor in front of the fermionic contribution 
while updating the A fields. There may, however, be some danger in this procedure 
because chiral symmetry breaking and anomalies suggest nonanalytic behavior as 
the number of fermionic species varies. 

6. Conclusions 

We have presented a particularly simple algorithm for the inclusion of fermionic 
fields in Monte Carlo simulations of quantum field theory. We replace the fermionic 
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ac t ion  by  scalar  fields interact ing with the inverse of  the Dirac  operator .  These  

scalar  fields are upda ted  using gaussian r a n d o m  numbers .  To  update  the gauge field, 
we  use  a small  step-size limit of  the Metropol is  et al. [8] procedure  and linearize the 
t e r m  involving the scalar fields. The  procedure  has similarities to the Langevin  
a p p r o a c h  of  ref. [2], bu t  we feel that  our method  is simpler to implement .  A 

var ia t ion  of  our  approach  permits  an interpolat ion to the pseudofermionic  al- 

go r i thm of  ref. [3]. A recent prepr in t  [10] has presented a similar a lgor i thm and 

suggested correct ing for finite step errors by  an appropr ia te  acceptance or rejection 
of  the new conf igurat ion at the end of each sweep of the gauge variables.  Our  

a lgor i thm is p resumably  also amenab le  to various acceleration techniques as exten- 

sively discussed in refs, [2] and [11]. 
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